jueves, 22 de octubre de 2015

ANATOMIA Y FISIOLOGÍA DEL CORAZÓN. CD. ANA GRACIELA PÉREZ V.



MÓDULO: SEMINARIO MONOGRÁFICO DE DIAGNÓSTICO INTEGRAL.
NOMBRE DE LA ALUMNA: Ana Graciela Pérez Vázquez
PROFR: C.D ESP. JOSÉ LUIS URIBE PIÑA
ANATOMÍA Y FISIOLOGÍA DEL CORAZÓN
Es un órgano muscular, una bomba aspirante e impelente, que aspira desde las aurículas o entradas de la sangre que circula por las venas, y la impulsa desde los ventrículos hacia las arterias. Entre estos dos se encuentra una válvula que hace que la dirección de la circulación sea la adecuada. El corazón es un órgano musculoso y cónico situado en la cavidad torácica, que funciona como una bomba, impulsando la sangre a todo el cuerpo. Un poco más grande que un puño, está dividido en cuatro cavidades: dos superiores, llamadas aurículas, y dos inferiores, llamadas ventrículos. El corazón impulsa la sangre mediante los movimientos de sístole y diástole.
  • Sístole es una contracción que usa el corazón para expulsar la sangre, ya sea de una aurícula o de un ventrículo.
  • Diástole es una relajación que usa el corazón para relajar los ventrículos o las aurículas y recibir la sangre.
Se sitúa en la parte inferior del mediastino medio en donde está rodeado por una membrana fibrosa gruesa llamada pericardio. Esta envuelto laxamente por el saco pericárdico que es un saco seroso de doble pared que encierra al corazón. El pericardio esta formado por un capa Parietal y una capa visceral. Rodeando a la capa de pericardio parietal está la fibrosa, formado por tejido conectivo y adiposo. La capa serosa del pericardio interior secreta líquido pericárdico que lubrica la superficie del corazón, para aislarlo y evitar la fricción mecánica que sufre durante la contracción. Las capas fibrosas externas lo protegen y separan.
El corazón se compone de tres tipos de músculo cardíaco principalmente:
  • Músculo auricular.
  • Músculo ventricular.
  • Fibras musculares excitadoras y conductoras especializadas.
Estos se pueden agrupar en dos grupos, músculos de la contracción y músculos de la excitación. A los músculos de la contracción se les encuentran: músculo auricular y músculo ventricular; a los músculos de la excitación se encuentra: fibras musculares excitadoras y conductoras especializadas.




LOCALIZACIÓN ANATÓMICA
https://i2.wp.com/upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Surface_anatomy_of_the_heart.png/200px-Surface_anatomy_of_the_heart.png
El corazón se localiza en la parte inferior del mediastino medio, entre el segundo y quinto espacio intercostal, izquierdo. El corazón está situado de forma oblicua: aproximadamente dos tercios a la izquierda del plano medio y un tercio a la derecha. El corazón tiene forma de una pirámide inclinada con el vértice en el “suelo” en sentido anterior izquierdo; la base, opuesta a la punta, en sentido posterior y 3 lados: la cara diafragmática, sobre la que descansa la pirámide, la cara esternocostal, anterior y la cara pulmonar hacia la izquierda.
ESTRUCTURA DEL CORAZÓN
De dentro a fuera el corazón presenta las siguientes capas:
  • El endocardio, una membrana serosa de endotelio y tejido conectivo de revestimiento interno, con la cual entra en contacto la sangre. Incluye fibras elásticas y de colágeno, vasos sanguíneos y fibras musculares especializadas, las cuales se denominan Fibras de Purkinje. En su estructura encontramos las trabéculas carnosas, que dan resistencia para aumentar la contracción del corazón.
  • El miocardio, el músculo cardíaco propiamente dicho; encargado de impulsar la sangre por el cuerpo mediante su contracción. Encontramos también en esta capa tejido conectivo, capilares sanguíneos, capilares linfáticos y fibras nerviosas.
  • El epicardio, es una capa fina serosa mesotelial que envuelve al corazón llevando consigo capilares y fibras nerviosas. Esta capa se considera parte del pericardio seroso.




MORFOLOGÍA CARDÍACA
https://i2.wp.com/upload.wikimedia.org/wikipedia/commons/thumb/1/11/Heart_numlabels.svg/250px-Heart_numlabels.svg.png
https://i0.wp.com/es.wikipedia.org/skins-1.5/common/images/magnify-clip.png
Vista frontal de un corazón humano. Las flechas blancas indican el flujo normal de la sangre.

Partes
1.-auricula derecha
2.-auricula izquierdo
3.-Vena cava superior
4.-Arteria Aorta
5.-Arteria pulmonar
6.-Vena pulmonar
7.-Válvula mitral o bicúspide
8.-Válvula sigmoidea aórtica
9.-Ventrículo izquierdo
10.-Ventrículo derecho
11.-Vena cava inferior
12.-Válvula tricúspide
13.-Válvula sigmoidea pulmonar
Miocardio (parte rosa)
→Epicardio (capa exterior del miocardio)
→Endocardio (capa interior al miocardio)
El corazón es del tamaño de un puño de un individuo, se divide en cuatro cavidades, dos superiores o atrios oaurículas y dos inferiores o ventrículos. Los atrios reciben la sangre del sistema venoso, pasan a los ventrículos y desde ahí salen a la circulación arterial.
El atrio y el ventrículo derecho forman lo que clásicamente se denomina el corazón derecho. Recibe la sangre que proviene de todo el cuerpo, que desemboca en el atrio derecho a través de las venas cavas superior e inferior. Esta sangre, baja en oxígeno, llega al ventrículo derecho, desde donde es enviada a la circulación pulmonar por la arteria pulmonar. Dado que la resistencia de la circulación pulmonar es menor que la sistémica, la fuerza que el ventrículo debe realizar es menor, razón por la cual su tamaño muscular es considerablemente menor al del ventrículo izquierdo.
El atrio izquierdo y el ventrículo izquierdo forman el llamado corazón izquierdo. Recibe la sangre de la circulación pulmonar, que desemboca a través de las cuatro venas pulmonares a la porción superior de la aurícula izquierda. Esta sangre está oxigenada y proviene de los pulmones. El ventrículo izquierdo la envía por la arteria aorta para distribuirla por todo el organismo.
El tejido que separa el corazón derecho del izquierdo se denomina septo o tabique. Funcionalmente, se divide en dos partes no separadas: la superior o tabique interatrial, y la inferior o tabique interventricular. Este último es especialmente importante, ya que por él discurre el fascículo de His, que permite llevar el impulso a las partes más bajas del corazón.
VÁLVULAS CARDÍACAS
Las válvulas cardíacas son las estructuras que separan unas cavidades de otras, evitando que exista reflujo retrógrado. Están situadas en torno a los orificios atrioventriculares (o aurículo-ventriculares) y entre los ventrículos y las arterias de salida. Son las siguientes cuatro:
  • La válvula tricúspide, que separa la aurícula derecha del ventrículo derecho.
  • La válvula pulmonar, que separa el ventrículo derecho de la arteria pulmonar.
  • La válvula mitral o bicúspide, que separa la aurícula izquierda del ventrículo izquierdo.
  • La válvula aórtica, que separa el ventrículo izquierdo de la arteria aorta.
Fisiología del músculo cardiaco
CICLO CARDIACO
Cada latido del corazón lleva consigo una secuencia de eventos que en conjunto forman el ciclo cardíaco, constando principalmente de tres etapas: sístole atrial, sístole ventrícular y diástole. El ciclo cardíaco hace que el corazón alterne entre una contracción y una relajación aproximadamente 72 veces por minuto, es decir el ciclo cardíaco dura unos 0,8 segundos.
https://i1.wp.com/upload.wikimedia.org/wikipedia/commons/6/6f/Heart_systole.png
Sístole
https://i1.wp.com/upload.wikimedia.org/wikipedia/commons/2/2d/Heart_diastole.png
Diástole
Para que exista paso de sangre de una cavidad a otra del corazón, la presión de la cavidad impulsora ha de ser siempre mayor que la de la cavidad receptora.
  • Durante la sístole auricular, las aurículas se contraen y proyectan la sangre hacia los ventrículos, si bien este paso de sangre es esencialmente pasivo, por lo que la contracción auricular participa poco en condiciones de reposo, sí que cobra importancia durante el ejercicio físico. Una vez que la sangre ha sido expulsada de las aurículas, las válvulas atrioventriculares entre las aurículas y los ventrículos se cierran. Esto evita el reflujo de sangre hacia las aurículas. El cierre de estas válvulas produce el sonido familiar del latido del corazón. Dura aproximadamente 0,1 s. En este momento el volumen ventricular es máximo, denominándose volumen de fin de diástole o telediastólico.
  • La sístole ventricular implica la contracción de los ventrículos expulsando la sangre hacia el aparato circulatorio. En esta fase se contrae primeramente la pared del ventrículo sin que haya paso de sangre porque hay que vencer la elevada presión de la aorta o de la arteria pulmonar; cuando esto se produzca tendrá lugar la eyección, la cual ocurre en dos fases, una rápida y otra lenta. Una vez que la sangre es expulsada, las dos válvulas sigmoideas, la válvula pulmonar en la derecha y la válvula aórtica en la izquierda, se cierran. Dura aprox. 0,3 s.Hay que decir que los ventrículos nunca se vacían del todo, quedando siempre sangre que forma el volumen de fin de sístolo o telesistólico.
  • Por último la diástole es la relajación de todas las partes del corazón para permitir la llegada de nueva sangre. Dura aprox. 0,4 s. [Corrección: En las imágenes adjuntas, ambas corresponden a una contracción del corazón, por lo tanto a Sístoles, No Diastole.]
En el proceso se pueden escuchar dos ruidos:
  • Primer ruido cardiaco: cierre de válvulas tricuspide y mitral.
  • Segundo ruido cardiaco:cierre de válvulas sigmoideas (válvulas pulmonares y aortas).
Ambos ruidos se producen debido al cierre súbito de las válvulas, sin embargo no es el cierre lo que produce el ruido, sino la reverberación de la sangre adyacente y la vibración de las paredes del corazón y vasos cercanos. La propagación de esta vibración da como resultado la capacidad para auscultar dichos ruidos.
Este movimiento se produce unas 70 a 80 veces por minuto.
La expulsión rítmica de la sangre provoca el pulso que se puede palpar en las arterias radiales, carótidas, femorales, etc.
Si se observa el tiempo de contracción y de relajación se verá que las atrios están en reposo aprox. 0,7 s y los ventrículos unos 0,5 s. Eso quiere decir que el corazón pasa más tiempo en reposo que en trabajo.
En la fisiología del corazón, cabe destacar, que sus células se despolarizan por sí mismas dando lugar a un potencial de acción, que resulta en una contracción del músculo cardíaco. Por otra parte, las células del músculo cardíaco se “comunican” de manera que el potencial de acción se propaga por todas ellas, de tal manera que ocurre la contracción del corazón. El músculo del corazón jamás se tetaniza (los cardiomiocitos tienen alta refractariedad, es por eso que no hay tétanos)
El nodo sinusal tiene actividad marcapasos, esto significa que genera ondas lentas en el resto del tejido sinusal.
                BLOQUEADORES
  • TTX tetradotoxina es un bloqueador de los canales de Na+ voltaje dependientes. Si es aplicado, se generará una onda lenta y no habrá contracción.
  • NIFEDIPINO, DILTIAZEM y VERAPAMIL son bloqueadores de canales de calcio dependientes de voltaje; afectan la amplitud de las ondas lentas.
  • ATROPINA es un bloqueador de los receptores muscarínicos por lo tanto hace que aumente la frecuencia cardíaca debido a activación del Sistema nervioso simpático.
  • PROPANOLOL es un bloqueador de los β-adrenorreceptores del nodo sinusal; su acción es disminuir la frecuencia cardíaca. Excitación cardíaca. Sistema Cardionector.
https://i1.wp.com/upload.wikimedia.org/wikipedia/commons/b/b7/Humhrt2.jpg
https://i0.wp.com/es.wikipedia.org/skins-1.5/common/images/magnify-clip.png
https://i2.wp.com/upload.wikimedia.org/wikipedia/commons/thumb/9/92/Gray501.png/200px-Gray501.png
https://i0.wp.com/es.wikipedia.org/skins-1.5/common/images/magnify-clip.png
https://i1.wp.com/upload.wikimedia.org/wikipedia/commons/thumb/0/08/Mediastinum_anatomy.jpg/250px-Mediastinum_anatomy.jpg
https://i0.wp.com/es.wikipedia.org/skins-1.5/common/images/magnify-clip.png
CORAZÓN Y VENAS PRINCIPALES
El músculo cardíaco es miogénico. Esto quiere decir que, a diferencia del músculo esquelético, que necesita de un estímulo consciente o reflejo, el músculo cardiaco se excita a sí mismo. Las contracciones rítmicas se producen espontáneamente, así como su frecuencia puede ser afectada por las influencias nerviosas u hormonales, como el ejercicio físico o la percepción de un peligro.
La estimulación del corazón está coordinada por el sistema nervioso autónomo, tanto por parte del sistema nervioso simpático (aumentando el ritmo y fuerza de contracción) como del parasimpático (reduce el ritmo y fuerza cardiacos).
La secuencia de las contracciones está producida por la despolarización (inversión de la polaridad eléctrica de la membrana debido al paso de iones activos a través de ella) del nodo sinusal o nodo de Keith-Flack (nodus sinuatrialis), situado en la pared superior de la aurícula derecha. La corriente eléctrica producida, del orden del microvoltio, se transmite a lo largo de las aurículas y pasa a los ventrículos por el nodo auriculoventricular (nodo AV) situado en la unión entre los dos ventrículos, formado por fibras especializadas. El nodo AV sirve para filtrar la actividad demasiado rápida de las aurículas. Del nodo AV se transmite la corriente al fascículo de His, que la distribuye a los dos ventrículos, terminando como red de Purkinje.
Este sistema de conducción eléctrico explica la regularidad del ritmo cardíaco y asegura la coordinación de las contracciones auriculoventriculares. Esta actividad eléctrica puede ser analizada con electrodos situados en la superficie de la piel, llamándose a esta prueba electrocardiograma o EKG.
ü  Batmotropismo: el corazón puede ser estimulado, manteniendo un umbral.
ü  Inotropismo: el corazón se contrae bajo ciertos estímulos. El sistema nervioso simpático tiene un efecto inotrópico positivo, por lo tanto aumenta la contractilidad del corazón.
ü  Cronotropismo: se refiere a la pendiente del potencial de acción. SN Simpático aumenta la pendiente, por lo tanto produce taquicardia. En cambio el SN Parasimpático la disminuye.
ü  Dromotropismo: es la velocidad de conducción de los impulsos cardíacos mediante el sistema excito-conductor. SN Simpático tiene un efecto dromotrópico positivo, por lo tanto hace aumentar la velocidad de conducción. Sn parasimpático es de efecto contrario.
ü  Lusitropismo: es la relajación del corazón bajo ciertos estímulos.
El corazón bombea solamente el 70 por ciento de la sangre que se encuentra en las auriculas y en los ventrículos.
La presión que crea el corazón humano al latir, es suficiente para lanzar la sangre a 10 metros de altura.
Existen sensores en nuestro sistema circulatorio que se encargan de “sentir (o recibir las sensaciones de)” las presiones, es por esto que se llaman barorreceptores. En el corazón tenemos barorreceptores de presión baja, localizados en las paredes del atrio y en vasos pulmonares, estos son sensibles a la distensión de las paredes. Por ejemplo si disminuye el llenado normal de los vasos pulmonares y atrios entonces habrá una señal (que llega al tronco encefálico) que le avise al sistema nervioso que debe aumentar la actividad simpática y la secreción de Hormona antidiurética para así compensar esa “baja de volumen” que había. También hay barorreceptores en el cayado aórtico y en el seno carotídeo que, según se produzca una disminución o un aumento de la presión sanguínea se estimularán el sistema nervioso simpático o parasimpático respectivamente para así restablecer el cambio de la presión (retroalimentación negativa).
Durante el desarrollo intrauterino del humano, estructuras que cumplen la función del corazón aparecen entre las semanas 4 y 5 pero, al no disponer el embrión de un sistema nervioso en funcionamiento, este funciona de manera automática, y sus latidos tienen una frecuencia de 160 lat/min. Esta frecuencia aumenta hasta la semana 8 a 10. En el último trimestre, cuando el sistema nervioso ya es funcional, la frecuencia disminuye. En esta etapa se produce un control parasimpático del ritmo cardíaco.
Casi todo el mundo tiene el corazón en el centro (entre los pulmones) pero hay una pequeña proporción de la población (0.01%) que tiene el corazón inclinado hacia la derecha.
CIRCULACIÓN FETAL
A partir de la 6ª ó 7ª semana queda ya bien establecida la circulación fetal, la cual se mantendrá durante toda la vida prenatal y cambiará drásticamente al momento del nacimiento.

El proceso de oxigenación de la sangre fetal se va a realizar en la placenta, desde donde la sangre oxigenada va a ser transportada por la vena umbilical (dentro del cordón umbilical) hacia el sistema circulatorio fetal.

Esta sangre que va por la vena umbilical es la que presenta la mayor concentración de O2de todo el sistema, ya que aún no ha pasado por ningún tejido en donde se realice intercambio gaseoso, ni tampoco por ningún sitio donde se mezcle con sangre desoxigenada; la presión a la que discurre la sangre a este nivel en gran medida es modulada por las contracciones uterinas.

La vena umbilical penetra a la cavidad abdominal fetal y asciende hasta nivel del hígado donde tiene dos opciones para seguir:

1. Seguir por un vaso que pasa por detrás del hígado: el conducto venoso, para finalmente desembocar en la vena cava inferior fetal, o

2. Penetrar a la circulación porta del hígado, llevándole O2y nutrientes al tejido hepático, para finalmente salir por las venas suprahepáticas y desembocar también a la vena cava inferior; durante su trayecto, la sangre que sigue esta vía va a sufrir una ligera desaturación de O2
La proporción de sangre que entra por cada una de estas dos vías va a ser controlada por un esfínter fisiológico que se encuentra a la entrada del conducto venoso y que protege al corazón fetal de recibir sangre a gran presión cuando hay contracciones uterinas.
De esta forma, por cualquiera de estas dos vías, la sangre llega a la vena cava inferior, donde se mezcla en cierta medida con la sangre desoxigenada que transporta este vaso procedente de la mitad inferior del cuerpo fetal. La mezcla que tiene la sangre a este nivel hace que la saturación de O2 disminuya un poco con respecto a la vena umbilical.
Toda esta sangre que va por la vena umbilical (oxigenada y desoxigenada) llega finalmente al atrio derecho del corazón, donde la mayor cantidad de ella cruza a través de la fosa oval hacia el atrio izquierdo, y sólo una pequeña cantidad lo hace hacia la tricúspide.

Al atrio derecho llega también la sangre desoxigenada de la vena cava superior (que trae la sangre utilizada por la mitad superior del cuerpo) y del seno coronario (con la sangre utilizada por el corazón); la sangre que entra por estas dos vías pasa preferencialmente hacia el ventrículo derecho a través de la tricúspide.

La sangre que llega al ventrículo derecho va a salir a través de la arteria pulmonar, pero como los pulmones están aún colapsados sólo una pequeña proporción de ella va a pasar a los capilares pulmonares y la mayor parte va a pasar por el conducto arterioso hacia el cayado de la aorta, donde se mezclará con la sangre que viene por esta arteria.

Esa pequeña cantidad de sangre que pasó hacia los capilares pulmonares, va a regresar al corazón, al atrio izquierdo, donde se unirá con la corriente que está cruzando por la fosa oval procedente del atrio derecho. Toda esta sangre del atrio izquierdo va a pasar por la mitral hacia el ventrículo izquierdo, de donde saldrá por la aorta ascendente.

La concentración de O2que tendrá esta sangre que está circulando por las cavidades izquierdas, será un poco más baja que a nivel de la vena umbilical, pero más alta que la que tiene a nivel de la aorta descendente. A su paso por la valva aórtica, una pequeña cantidad de sangre se irá hacia las arterias coronarias para la irrigación del corazón, sangre que finalmente retornará al atrio derecho por el seno coronario.

La sangre que llega a la aorta ascendente llega al cayado de la aorta, donde parte de ella es enviada a través del tronco braquicefálico derecho, la carótida primitiva izquierda y la subclavia izquierda hacia la cabeza y las extremidades superiores, regiones que recibirán sangre con suficiente concentración de O2.
.
Finalmente, la sangre que no se va por estas arterias del cayado aórtico, continúa su camino y se va a mezclar con la sangre que trae el conducto arterioso (procedente de la pulmonar) y que está muy pobremente oxigenada, por lo que al juntarse, la sangre mezclada que continuará hacia la aorta descendente mostrará una notoria disminución en su oxigenación y de esta forma va a ir siendo distribuida a todos los restantes tejidos fetales (a nivel del tórax, abdomen y extremidades inferiores).

Toda esta sangre que va a ser distribuida por los tejidos fetales, después de pasar por los lechos capilares tisulares, retornará por sus afluentes respectivas a lasvenas cavas superior e inferior que la llevarán hasta el atrio derecho donde se reiniciará nuevamente su circulación.

A nivel de las arterias iliacas, se originan las arterias umbilicales, las cuales llevarán nuevamente la sangre a la placenta para su oxigenación.

FOSA OVAL

Es la Comunicación normal en la vida fetal a nivel del septuminteratrial que permite el paso de sangre del atrio derecho al atrio izquierdo durante esta etapa de la vida.

Al momento del nacimiento, al comenzar a funcionar los pulmones, la presión del atrio izquierdo supera a la del atrio derecho con lo que deja de funcionar la fosa oval y deja de pasar sangre de un atrio al otro; a este proceso se le llama cierre fisiológico de la fosa oval.

Normalmente durante los 6 primeros meses después del nacimiento, el septum primum y el septum secundum interatrial se fusionan y la fosa oval se cierra anatómicamente. El 25% de la población normal nunca cierra anatómicamente la fosa oval.

CONDUCTO ARTERIOSO

Comunicación normal en la vida fetal entre la arteria pulmonar y el cayado de la aorta, que permite el paso de la sangre de la pulmonar hacia la aorta durante esta etapa de la vida.

Al momento del nacimiento, al comenzar a funcionar los pulmones, estos permiten que entre a su circulación todo el volumen de sangre que sale del ventrículo derecho para su oxigenación y, al mismo tiempo, al oxigenarse la sangre a nivel pulmonar, se alcanzan niveles mucho más altos de concentración de O2en sangre, lo que estimula a las fibras musculares del conducto arterioso a que se contraigan y obliteren este vaso; a este proceso se le llama cierre fisiológico del conducto arterioso.

Normalmente, durante las 3 primeras semanas después del nacimiento, la íntima del conducto arterioso prolifera y cierra la luz de este vaso, proceso que se conoce como cierre anatómico del conducto arterioso.

Si por alguna causa no se cierra anatómicamente el conducto arterioso, esta situación va a ser ya patológica, ya que este vaso va a permitir el paso “anormal” de sangre en la vida postnatal del circuito de mayor presión al de menor presión, es decir, de la aorta hacia la pulmonar, lo que va a producir una sobrecarga de volumen y presión de la circulación pulmonar, que en corto plazo puede provocar una hipertensión arterial irreversible. A esta patología se denomina Persistencia del Conducto Arterioso
CIRCULACIÓN
Ø  Circulación mayor: es el recorrido que efectúa la sangre oxigenada (representada con color rojo) que sale del ventrículo izquierdo del corazón y que, por la arteria aorta llega a todas las células del cuerpo, donde se realiza el intercambio gaseoso celular o tisular: deja el O2 que transporta y se carga con el dióxido de carbono, por lo que se convierte en sangre carboxigenada (representada con color azul). Esta sangre con CO2 regresa por las venas cavas superior e inferior a la aurícula derecha del corazón.

Ø  Circulación menor: es el recorrido que efectúa la sangre carboxigenada que sale del ventrículo derecho del corazón y que, por la arteria pulmonar, llega a los pulmones donde se realiza el intercambio gaseoso alveolar o hematosis: deja el CO2 y fija el O2. Esta sangre oxigenada regresa por las venas pulmonares a la aurícula izquierda del corazón.

1 comentario:

Unknown dijo...

Hola Ana no tienes imágenes.